Seipinopathy: a novel endoplasmic reticulum stress-associated disease.
نویسندگان
چکیده
The Seipin/BSCL2 gene was originally identified as a loss-of-function gene for congenital generalized lipodystrophy type 2 (CGL2), a condition characterized by severe lipoatrophy, insulin resistance, hypertriglyceridaemia and mental retardation. Recently, gain-of-toxic-function mutations (namely, mutations N88S and S90L) in the seipin gene have been identified in autosomal dominant motor neuron diseases such as Silver syndrome/spastic paraplegia 17 (SPG17) (OMIM #270685) and distal hereditary motor neuropathy type V (dHMN-V) (OMIM #182960). Detailed phenotypic analyses have revealed that upper motor neurons, lower motor neurons and peripheral motor axons are variously affected in patients with these mutations. The clinical spectrum for these mutations is broad, encompassing Silver syndrome, some variants of Charcot-Marie-Tooth disease type 2, dHMNV and spastic paraplegia, even within a common pedigree. Therefore, we propose that seipin-related motor neuron diseases can be collectively referred to as 'seipinopathies'. Expression of the seipin protein can be detected in motor neurons in the spinal cord and white matter in the frontal lobe. This is consistent with the distribution of seipinopathies in the upper and lower motor neurons. Recent studies have shown that seipin, an endoplasmic reticulum (ER)-resident membrane protein, is an N-glycosylated protein that is proteolytically cleaved into N- and C-terminal fragments and is polyubiquitinated. Interestingly, the N88S and S90L mutations are in the N-glycosylation motif, and these mutations enhance ubiquitination and degradation of seipin by the ubiquitin-proteasome system (UPS). Furthermore, both mutations appear to result in proteins that are improperly folded, which leads to accumulation of the mutant protein in the ER. We have shown that expression of mutant forms of seipin in cultured cells activates the unfolded protein response (UPR) pathway and induces ER stress-mediated cell death. These findings suggest that seipinopathies are novel conformational diseases and that neurodegeneration in these diseases is tightly associated with ER stress, which has recently been reported to be associated with other neurodegenerative diseases. Further study of the pathological mechanisms of the mutant forms of seipin may lead to important new insights into motor neuron diseases, including other spastic paraplegia diseases and amyotrophic lateral sclerosis.
منابع مشابه
The First Report of a Japanese Case of Seipinopathy with a BSCL2 N88S Mutation
Seipinopathy is an autosomal dominant neurodegenerative disease caused by mutations of the Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2) gene. We report the first Japanese case of seipinopathy with a heterozygous mutation of p.N88S in the BSCL2 gene. The patient showed bilateral hyperreflexia of the biceps, triceps, brachioradialis, and knee, as well as the pes cavus and distal dominant ...
متن کاملN88S seipin mutant transgenic mice develop features of seipinopathy/BSCL2-related motor neuron disease via endoplasmic reticulum stress.
Heterozygosity for mutations (N88S and P90L) in the N-glycosylation site of seipin/BSCL2 is associated with the autosomal dominant motor neuron diseases, spastic paraplegia 17 and distal hereditary motor neuropathy type V, referred to as 'seipinopathies'. Previous in vitro studies have shown that seipinopathy-linked mutations result in accumulation of unfolded proteins in the endoplasmic reticu...
متن کاملAlleviation of seipinopathy-related ER stress by triglyceride storage.
Mutations affecting the N-glycosylation site in Berardinelli-Seip lipodystrophy (BSCL)-associated gene BSCL2/seipin lead to a dominantly inherited spastic paraplegia termed seipinopathy. While the loss of function of seipin leads to severe congenital lipodystrophy, the effects of seipin N-glycosylation mutations on lipid balance in the nervous system are unknown. In this study, we show that exp...
متن کاملCalcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex
Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...
متن کاملCalcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex
Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...
متن کاملEchinacoside's nigrostriatal dopaminergic protection against 6‐OHDA‐Induced endoplasmic reticulum stress through reducing the accumulation of Seipin
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that echinacoside (ECH), a phenylethanoid glycoside found in Cistanche deserticola, has a protective effect against the development of PD. However, the detailed mechanisms of how ECH suppresses neuronal death have not been fully elucidated. In this study, we confirmed that ECH p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 132 Pt 1 شماره
صفحات -
تاریخ انتشار 2009